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Abstract

Previous option pricing research typically assumes that the risk-free rate or the short rate is constant during the life of the option. In
this study, we incorporate the stochastic nature of the short rate in our option valuation model and derive explicit formulas for European
call and put options on a stock when the short rate follows the Merton model. Using our option model as a benchmark, our numerical
analysis indicates that, in general, the Black–Scholes model overvalues out-of-the-money calls, moderately overvalues at-the-money
calls, and slightly overvalues in-the-money calls. Our analysis is directly extensible to American calls on non-dividend-paying stocks
and to European puts by virtue of put-call parity.
© 2009 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Since Black and Scholes [2] made an important breakthrough by deriving an exact no-arbitrage pricing formula for
European options, many academics have worked on option pricing research and come up with alternative formulas to
the original Black–Scholes (B–S) pricing formula. Among these academics are Cox and Ross [5], Merton [21], Roll
[22], Cox et al. [6], Geske [8], Lee et al. [15], Whaley [26], Jarrow and Rudd [11], Rubinstein [23], Hull and White
[10], Johnson and Shanno [12], Johnson and Stulz [13], Scott [24], Wiggins [27], Duan [7], and Heston and Nandi [9],
each making different assumptions about the various factors that affect the price of an option. However, all the above
option pricing studies assume that the risk-free rate or the short rate is constant during the life of the option.

The assumption of a constant short rate r(t) is clearly at odds with reality because, as a matter of fact, r(t) is evolving
randomly over time. Fig. 1 shows the 3-month U.S. Treasury bill rate (often used as a proxy for the short rate) from
1999 to 2008, fluctuating randomly between 0.00 and 0.0625. Hence, in this study, we incorporate its stochastic nature
into our option valuation model. Specifically, we use the following stochastic process, first proposed by Merton [19,20],
to depict its dynamics and derive explicit pricing formulas for European call and put on a stock.

dr(t) = αdt + σdZr (1)

where α is the drift in the short rate, σ is the volatility of the short rate, and Zr is a standard Wiener process. Henceforth,
the stochastic process in Eq. (1) will be referred to as the Merton model of the short rate.
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Fig. 1. Three-month U.S. Treasury bill rate from 1999 to 2008.

Fig. 2. A sample path of the short rate under the Merton model.

In theory, the Merton model implies a positive probability of negative interest rates. But negative rates are less
likely to occur if α is positive. In addition, most exchange-traded stock options have a maturity of less than 9 months.
Hence, using an initial positive value for r(t) and appropriate values for α and σ, we can be assured that its expected
first-passage time to the origin is longer than 9 months. Fig. 2 shows a sample path of r(t) over a 1-year duration based
on r(t) = short rate at initial time t = 0.02, �t = 0.004, ᾱ = 0.005, and σ̄ = 0.02, where ᾱ and σ̄ are estimated by Chan
et al. [4] using the generalized method of moments.

There is considerable empirical evidence1 of systematic biases in the B–S model. For example, Merton [21] points
out that the market prices for deep-in-the-money, deep-out-of-the-money, and shorter-maturity calls tend to sell for
more than the B–S prices, whereas the market prices for marginally-in-the-money and longer-maturity calls tend to
sell for less than the B–S prices. MacBeth and Merville [16] report that the B–S prices are, on average, greater (less)
than the market prices for out-of-the-money (in-the-money) calls. In Section 3, we will employ our option valuation
model as a benchmark and investigate the pricing biases in the B–S model.

The rest of the paper proceeds as follows: In Section 2, we derive the formula for the price of a riskless zero-coupon
bond paying $1 at maturity based on Eq. (1) and then derive the pricing formulas for European call and put on a stock.
In Section 3, we examine how the various parameters of our model affect option prices and investigate the pricing
biases in the B–S model when we assume that the correct model involves a stochastic short rate following Eq. (1).
Section 4 concludes this research.

2. Derivation of option pricing formulas under the Merton model

To proceed, we first derive the pricing formula for a riskless zero-coupon bond under the Merton model in Subsection
2.1 and then, using the bond pricing formula, derive explicit formulas for European call and put options in Subsection
2.2.

1 See Black [1], Merton [21], MacBeth and Merville [16,17], and Lauterbach and Schultz [14].
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2.1. Pricing formula for a zero-coupon bond

Let Pb = Pb(r,t,T) be the price at time t of a riskless zero-coupon bond paying $1 at time T, where we set τ = T − t.
That is, Pb(r,T,T) = 1. Using the Merton model of the short rate in Eq. (1) and applying Ito’s lemma, we have

dPb =
[
∂Pb

∂t
+ α

∂Pb

∂r
+ 1

2
σ2 ∂2Pb

∂r2

]
dt + σ

∂Pb

∂r
dZr (2)

Letting μb = 1/Pb[∂Pb/∂t + α(∂Pb/∂r) + 1/2σ2(∂2Pb/∂r2)], σb = −1/Pb[σ(∂Pb/∂r)] = −σ/Pb[∂Pb/∂r], and assuming
the local expectations hypothesis holds for the term structure of interest rates (i.e., μb = r), we obtain

dPb

Pb

= rdt + σbdZr (3)

1

2
σ2 ∂2Pb

∂r2 + α
∂Pb

∂r
+ ∂Pb

∂t
− rPb = 0 (4)

To solve Eq. (4) for Pb(r,t,T), let τ = T − t and Pb(r,t,T) = exp[A(τ) − rB(τ)]. Then we have ∂Pb/∂r = −B(τ)Pb,
∂2Pb/∂r2 = B2(τ)Pb, and ∂Pb/∂t = Pb[(−∂A(τ)/∂t) + r(∂B(τ)/∂t)]. Substituting them into Eq. (4) and simplifying, Eq. (4)
becomes

Pb

{[
1

2
σ2B2(τ) − αB(τ) − ∂A(τ)

∂t

]
+ r

[
∂B(τ)

∂t
− 1

]}
= 0 (5)

Eq. (5) implies that 1/2σ2B2(τ) − αB(τ) − (∂A(τ)/∂t) = 0 and ∂B(τ)/∂t − 1 = 0. Solving for A(τ) and B(τ), we have
A(τ) = −ατ2/2 + σ2τ3/6 and B(τ) = τ. Hence, we obtain a formula for the price at time t of a riskless zero-coupon bond
paying $1 at maturity T.

Pb(r, t, T ) = exp

{
−rτ − ατ2

2
+ σ2τ3

6

}
(6)

2.2. Derivation of explicit formulas for European call and put options

In this study, we assume that there are no transaction costs, margin requirements, and taxes; all securities are
divisible; security trading is continuous and borrowing and short-selling are permitted without restriction; there are no
dividend payouts over the life of the option; and all investors can borrow or lend at the same short rate. Further, we
assume that the stock price follows the following geometric Wiener process:

dPs

Ps

= μsdt + σsdZs (7)

where μs and σs are constant, and Zs is a standard Wiener process. Further, the correlation between dZr and dZs is
given by ρ.

Let X be the exercise price of the call option and c = c(Ps,Pb,τ;X) be the call price, which is a function of the stock
price Ps, the riskless zero-coupon bond price Pb, and the time to maturity τ. By Ito’s lemma, the change in the call
price over an infinitesimal time dt satisfies the following stochastic differential equation:

dc = ∂c

∂Ps

dPs + ∂c

∂Pb

dPb + ∂c

∂τ
dτ + ∂2c

∂Ps∂Pb

(dPsdPb) + 1

2

[
∂2c

∂P2
s

(dPs)
2 + ∂2c

∂P2
b

(dPb)2

]
(8)

Substituting dPsdPb = ρσsσbPsPbdt, (dPs)2 = σ2
s P2

s dt, (dPb)2 = σ2
bP2

b dt, and dτ = −dt into Eq. (8), we have

dc = ∂c

∂Ps

dPs + ∂c

∂Pb

dPb +
[

1

2

∂2c

∂P2
s

σ2
s P2

s + 1

2

∂2c

∂P2
b

σ2
bP2

b + ∂2c

∂Ps∂Pb

ρσsσbPsPb − ∂c

∂t

]
dt (9)

Now we form a hedge portfolio consisting of the stock, the riskless bond, and the call. Let Qs be the number of
shares of the stock, Qb be the number of the bond, and Qc be the number of the call. The hedge is formed such that the
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value (say, H) of the hedge portfolio is zero.2 That is, H ≡ QsPs + QbPb + Qcc = 0. Hence, we have

dH = QsdPs + QbdPb + Qcdc = 0 (10)

Substituting Eq. (9) into Eq. (10) and grouping, Eq. (10) becomes

dH = Qc

[
1

2

∂2c

∂P2
s

σ2
s P2

s + 1

2

∂2c

∂P2
b

σ2
bP2

b + ∂2c

∂Ps∂Pb

ρσsσbPsPb − ∂c

∂τ

]
dt

+
[
Qc

∂c

∂Ps

+ Qs

]
dPs +

[
Qc

∂c

∂Pb

+ Qb

]
dPb = 0 (11)

Eq. (11) implies that Qc(∂c/∂Ps) + Qs = 0, Qc(∂c/∂Pb) + Qb = 0, and

1

2

∂2c

∂P2
s

σ2
s P2

s + 1

2

∂2c

∂P2
b

σ2
bP2

b + ∂2c

∂Ps∂Pb

ρσsσbPsPb − ∂c

∂τ
= 0 (12)

Hence, the price of a European call must satisfy Eq. (12) subject to the following two boundary conditions:
c(0,Pb,τ;X) = 0 and c(Ps,1,τ;X) = max(0,Ps − X).

To solve for c in Eq. (12), we have to transform Eq. (12) to a standard one-dimensional heat equation3 of the form
∂u(x,t)/∂t = k(∂2u(x,t)/∂x2), where k is some constant. We make use of the linear homogeneity4 of c in Ps and XPb so
that we can perform such transformation for Eq. (12). Accordingly, we set Θ ≡ Θ(Ps,Pb,t) ≡ Ps/XPb. By Ito’s lemma
and Eqs. (3) and (7), the total differential of Θ is given by

dΘ =
[

∂Θ

∂Ps

μsPs + ∂Θ

∂Pb

rPb + ∂Θ

∂t
+ 1

2

∂2Θ

∂P2
s

σ2
s P2

s + 1

2

∂2Θ

∂P2
b

σ2
bP2

s + ∂2Θ

∂Ps∂Pb

ρσsσbPsPb

]
dt

+ ∂Θ

∂Ps

σsPsdZs + ∂Θ

∂Pb

σbPbdZr (13)

Substituting ∂Θ/∂Ps = 1/XPb, ∂Θ/∂Pb = −Ps/XP2
b , ∂Θ/∂t = 0, ∂2Θ/∂P2

s = 0, ∂2Θ/∂P2
b = Ps/XP3

b ,
∂2Θ/∂Ps∂Pb = −1/XP2

b into Eq. (13) and simplifying, Eq. (13) becomes

dΘ

Θ
= μΘdt + σΘdZΘ (14)

where μΘ = μs − r + (σ2
b/2) − ρσsσb and σ2

Θ = σ2
s + σ2

b − 2ρσsσb.
To solve Eq. (12) for c(Ps,Pb,τ;X) subject to the two boundary conditions, we use a new variable C such

that C ≡ C(Θ,τ;X) ≡ c(Ps,Pb,τ;X)/XPb. That is, C is the call price5 expressed in the same units as Θ. That
is, c(Ps,Pb,τ;X) = XPbC(Θ,τ;X). Then ∂2c/∂P2

s = (1/XPb)∂2C/∂P2
s , ∂2c/∂P2

b = (P2
s /XP3

b )∂2C/∂P2
s , ∂2c/∂Ps∂Pb =

(−Ps/XP2
b )∂2C/∂P2

s , and ∂c/∂τ = XPb(∂C/∂τ). Substituting them into Eq. (12) and simplifying, Eq. (12) becomes

1

2

(
Ps

XPb

)2

[σ2
s + σ2

b − 2ρσsσb]
∂2C

∂P2
s

− ∂C

∂τ
= 0 (15)

Since Θ2 = (Ps/XPb)2 and σ2
Θ = σ2

s + σ2
b − 2ρσsσb, Eq. (15) becomes

1

2
σ2

ΘΘ2 ∂2C

∂Θ2 − ∂C

∂τ
= 0 (16)

That is, C = C(Θ,τ;X) must satisfy Eq. (16) subject to the following two boundary conditions: C(0,τ;X) = 0 and
C(Θ,0;X) = max(0,Θ − 1).

2 Operationally, this hedge can be formed by using the proceeds from borrowing at the short rate and short-sales to pay for the long positions.
3 See, for example, Chapter 6 of Brown and Churchill [3].
4 See Margrabe [18] for more on linear homogeneity.
5 This is feasible because c(Ps,Pb,τ;X) is homogeneous of degree one in Ps and XPb.
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Now defining a new variable Σ ≡ ∫ T

t
σ2

Θ(ϕ)dϕ and, accordingly, defining Φ(Θ,Σ) ≡ C(Θ,τ), we have
∂2C/∂Θ2 = ∂2Φ/∂Θ2 and ∂C/∂τ = (∂Φ/∂Σ)(∂Σ/∂τ) = (∂Φ/∂Σ)σ2

Θ. Substituting them into Eq. (16) and simplifying,
we have

1

2
Θ2 ∂2Φ

∂Θ2 − ∂Φ

∂Σ
= 0 (17)

To solve Eq. (17) subject to Φ(0,Σ) = 0 and Φ(Θ,0) = max(0,Θ − 1), we transform Eq. (17) by mak-
ing the change of variables θ ≡ log Θ + (Σ/2) and u(θ,Σ) ≡ Φ(Θ,Σ)/Θ. We have Φ(Θ, Σ) = u(log Θ +
1/2

∫ T

t
σ2

Θ(ϕ)dϕ,
∫ T

t
σ2

Θ(ϕ)dϕ)Θ, ∂2Φ/∂Θ2 = 1/Θ(∂u/∂θ + ∂2u/∂θ2), and ∂Φ/∂Σ = Θ(1/2∂u/∂θ + ∂u/∂Σ). Substituting
them into Eq. (17) and simplifying, Eq. (17) becomes ∂u/∂Σ = 1/2(∂2u/∂θ2). For the first boundary condition,
note that u(Θ,Σ) = Φ(Θ,Σ)/Θ = (1/Θ)C(Θ,τ) = 1/Θ(c/XPb) = (XPb/Ps)c/XPb = c/Ps. Thus the first boundary condition
is |u(θ,Σ)| = (c/Ps) ≤ 1 and the second boundary condition is 1 − (1/Θ) = 1 − exp[−log Θ] = 1 − exp[−θ], because
θ = log Θ when Σ = 0. Hence, u(θ,Σ = 0) = (Θ − 1)/Θ = 1 − (1/Θ) = 1 − exp[−θ] if 1 ≥ exp[−θ] and Φ(θ,Σ = 0) = 0 if
1 < exp[−θ]. In sum, our boundary value problem consists of a boundedness condition |u(θ,Σ)| ≤ 1 and the following
two conditions:

∂u(θ, Σ)

∂Σ
= 1

2

∂2(θ, Σ)

∂θ2 (18)

u(θ, 0) = 1 − exp[−θ] if 1 ≥ exp[−θ]

= 0 if 1 < exp[−θ] (19)

Eq. (18) is in standard one-dimensional heat equation and thus can be solved. Let u(θ,Σ) = f(θ)g(Σ), where f(θ) is
some function of θ and g(Σ) is some function of Σ. Substituting u(θ,Σ) = f(θ)g(Σ) into Eq. (18) and simplifying, we
obtain

2

g(Σ)

∂g(Σ)

∂Σ
= 1

f (θ)

∂2f (θ)

∂θ2 (20)

That is, the left side of Eq. (20) depends only on Σ and the right side depends only on θ. Thus, we can set both sides
of Eq. (20) equal to a constant6 −k2, where k > 0. By simplifying, we obtain the following two ordinary differential
equations:

∂g(Σ)

∂Σ
+ 1

2
k2g(Σ) = 0 (21)

∂2f (θ)

∂θ2 + k2f (θ) = 0 (22)

Solving Eqs. (21) and (22), we have g(Σ) = exp(−1/2k2Σ) and f(θ) = A(θ) cos(kθ) +B(θ) sin(kθ). The linear combi-
nation of functions u(θ,Σ) = f(θ)g(Σ) becomes

u(θ, Σ) =
∫ ∞

0
[A(k) cos(kθ) + B(k) sin(kθ)] exp

(
−1

2
k2Σ

)
dk (23)

6 We set both sides of Eq. (20) equal to −k2, where k > 0, in order that the two ordinary differential equations in Eqs. (21) and (22) have continuous
eigenvalues k2.
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If A(k) = 1/π
∫∞
−∞ f (ω) cos(kω) dω and B(k) = 1/π

∫∞
−∞ f (ω) sin(kω) dω, Eq. (23) is valid according to the

Fourier integral theorem. Substituting them into Eq. (23), we obtain7

u(θ, Σ) = 1

π

∫ ∞

0

{∫ ∞

−∞
[cos(kω) cos(kθ) + sin(kω) sin(kθ)] f (ω)dω

}
exp

(
−1

2
k2Σ

)
dk

= 1√
2Σπ

∫ ∞

−∞
f (ω) exp

(
− (ω − θ)2

2Σ

)
dω

(24)

Letting q = (ω − θ)/
√

2Σ, we have ω = θ + q
√

2Σ and dω = √
2Σdq. Substituting q = (ω − θ)/

√
2Σ and Eq.

(20) into Eq. (24), we obtain

u(θ, Σ) = 1√
π

∫ ∞

−∞
f (θ + q

√
2Σ) exp(−q2) dq = 1√

π

∫ ∞

−θ/
√

2Σ

[1 − exp(−θ − q
√

2Σ)] exp(−q2) dq

= 1√
π

∫ ∞

−θ/
√

2Σ

exp(−q2)dq − 1√
π

∫ ∞

−θ/
√

2Σ

exp(−θ − q
√

2Σ − q2) dq

(25)

To solve Eq. (25), we make another change of variables by letting a = √
2q. Then the first term of Eq. (25) becomes

1√
π

∫ ∞

−θ/
√

2Σ

exp(−q2) dq = 1√
2π

∫ ∞

−θ/
√

Σ

exp

(
−a2

2

)
da = N

(
θ√
Σ

)
= N(a1) (26)

where a1 = θ/
√

Σ and N(·) is the cumulative probability distribution function for a standardized normal random
variable.

For the second term of Eq. (25), −θ − q
√

2Σ − q2 = − log Θ − (Σ/2) − a
√

Σ − (a2/2) = log 1/Θ − (1/2)[a2 +
2a

√
Σ + (

√
Σ)

2
] = log 1/Θ − 1/2(a + √

Σ)
2
. So the integrand of the second term is exp(−θ − q

√
2Σ − q2) =

exp[log 1/Θ − (1/2)(a + √
Σ)

2
] = 1/Θ exp[−1/2(a + √

Σ)
2
]. Substituting it into the second term of Eq. (25) and

simplifying, we have

1√
π

∫ ∞

−θ/
√

2Σ

exp(−θ − q
√

2Σ − q2)dq = 1

Θ
√

2π

∫ a1

−∞
exp

[
−1

2
(a +

√
Σ)

2
]

da

= 1

Θ
√

2π

∫ a2

−∞
exp

[
−b2

2

]
db = 1

Θ
N(a2)

(27)

where b = a + √
Σ and a2 = a1 − √

Σ. Combining Eqs. (26) and (27), we have

u(θ, Σ) = N(a1) − 1

Θ
N(a2) (28)

or Φ(Θ, Σ) = Θu(θ, Σ) = ΘN(a1) − N(a2) (29)

Note that Θ ≡ Ps/XPb and c(Ps,Pb,τ:X) ≡ XPbC(Θ,τ:X) ≡ XPs Φ(Θ,Σ). By the linear homogeneity property of
c ≡ callO, the price of a European call is

c = XPs[ΘN(a1) − N(a2)] = PsN(a1) − XPbN(a2) (30)

where a1 = θ/
√

Σ = [log Θ + (Σ/2)]/
√

Σ and a2 = a1 − √
Σ = [log Θ − (Σ/2)]/

√
Σ. Further, Σ is given by

Σ ≡
∫ T

t

σ2
Θ(ϕ)dϕ =

∫ T

t

[σ2
s + σ2

b − 2ρσsσb]dϕ = σ2
s τ + σ2τ3 − 2ρσsστ2.

By put-call parity, the price p ≡ p(Ps,Pb,τ;X) ≡ putO of a European put is

p = c − Ps + XPb = XPbN(−a2) − PsN(−a1) (31)

7 Detailed derivation of Eq. (24) can be obtained from the first author upon request.
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Table 1
Prices for out-of-the-money calls when the short rate at initial time t is 0.06.

τ ρ α σ callO callBS � �%

0.25 0.2 0.002 0.02 0.0345 0.0351 0.0006 1.7
0.2 0.002 0.08 0.0330 0.0351 0.0021 6.4
0.2 0.008 0.02 0.0346 0.0351 0.0005 1.4
0.2 0.008 0.08 0.0331 0.0351 0.0020 6.0
0.8 0.002 0.02 0.0326 0.0351 0.0025 7.7
0.8 0.002 0.08 0.0257 0.0351 0.0094 36.6
0.8 0.008 0.02 0.0327 0.0351 0.0024 7.3
0.8 0.008 0.08 0.0258 0.0351 0.0093 36.0

0.75 0.2 0.002 0.02 0.4044 0.4128 0.0084 2.1
0.2 0.002 0.08 0.3906 0.4128 0.0222 5.7
0.2 0.008 0.02 0.4090 0.4128 0.0038 0.9
0.2 0.008 0.08 0.3951 0.4128 0.0177 4.5
0.8 0.002 0.02 0.3705 0.4128 0.0423 11.4
0.8 0.002 0.08 0.2550 0.4128 0.1578 61.9
0.8 0.008 0.02 0.3749 0.4128 0.0379 10.1
0.8 0.008 0.08 0.2587 0.4128 0.1541 59.6

Note that Ps = 15, X = 20, σs = 0.3, callO = call price for our model, callBS = call price for B–S model, � = callBS − callO, �% = 100�/callO, and
τ = time to maturity (in year).

If the short rate is constant (i.e., α and σ in Eq. (1) are both 0), then the bond price in Eq. (6) is Pb(r,t,T) = exp(−rτ)
and Σ = ∫ T

t
σ2

s dϕ = σ2
s τ. Substituting them into Eqs. (30) and (31), we obtain the B–S formulas for European call

and put options.

cBS ≡ callBS = PsN(d1) − X exp(−rτ)N(d2) (32)

pBS ≡ putBS = X exp(−rτ)N(−d2) − PsN(−d1) (33)

where d1 = (log Ps − log X + (r + σ2
s /2)τ)/σs

√
τ and d2 = d1 − σs

√
τ.

3. Effect of the parameters on option price and pricing biases in the B–S model

For a non-dividend-paying stock, the prices for its European puts and calls are connected by put-call parity.8 As
such, for space reason, we focus only on analyzing calls. We point out how the various parameters affect call price and
then investigate the pricing biases in the B–S model. We focus on out-of-the-money, at-the-money, and in-the-money
calls when the short rate9 at initial time is 0.06. To examine call prices under different but reasonable parameterizations
of the short rate, we set α = 0.002 and 0.008, σ = 0.02 and 0.08, ρ = 0.2 and10 0.8, and τ = 0.25 and 0.75 year.

From Eqs. (6) and (30), we note that each of the parameters exerts different degree of effect on the call price c.
Specifically, c increases as ρ or σ decreases and decreases as ρ or σ increases; on the other hand, c increases as r(t), α,
or τ increases and decreases as r(t), α, or τ decreases. The reason that c increases as ρ decreases is as follows: given
that Σ = σ2

s τ + σ2τ3 − 2ρσsστ2 and σ2τ3 < 2ρσsστ2, we have that Σ increases as ρ decreases and Σ decreases as ρ

increases. Since c increases as Σ increases, call price increases as ρ decreases. The reason that c increases as τ increases
is as follows: given that Σ = σ2

s τ + σ2τ3 − 2ρσsστ2 and −rτ1 − (ατ2
1/2) + (σ2τ3

1/6) > −rτ2 − (ατ2
2/2) + (σ2τ3

2/6)
for τ1 < τ2, we have that Σ increases as τ increases and Pb decreases as τ increases. Since c increases as Σ increases
and/or Pb decreases, call price increases as τ increases. Similar reasoning can be made for the other three parameters.

Table 1 shows the prices based on Eq. (30) and the B–S prices based on Eq. (32) for out-of-the-money
(Ps = 15 < X = 20) calls. Based on Eq. (30), the B–S model overvalues out-of-the-money calls. For example,

8 This parity relationship between call and put prices was first pointed out by Stoll [25].
9 Similar results can be obtained for call options when r(t) = 0.02 or 0.10.

10 Note that stock and bond prices tend to increase as interest rates decrease and to decrease as interest rates increase. Hence, stock and bond prices
are generally positively correlated, which means ρ > 0.
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Table 2
Prices for at-the-money calls when the short rate at initial time t is 0.06.

τ ρ α σ callO callBS � �%

0.25 0.2 0.002 0.02 1.3385 1.3416 0.0031 0.2
0.2 0.002 0.08 1.3289 1.3416 0.0127 1.0
0.2 0.008 0.02 1.3403 1.3416 0.0013 0.1
0.2 0.008 0.08 1.3308 1.3416 0.0108 0.8
0.8 0.002 0.02 1.3266 1.3416 0.0150 1.1
0.8 0.002 0.08 1.2802 1.3416 0.0614 4.8
0.8 0.008 0.02 1.3285 1.3416 0.0131 1.0
0.8 0.008 0.08 1.2821 1.3416 0.0595 4.6

0.75 0.2 0.002 0.02 2.4797 2.4918 0.0121 0.5
0.2 0.002 0.08 2.4529 2.4918 0.0389 1.6
0.2 0.008 0.02 2.4964 2.4918 −0.0046 −0.2
0.2 0.008 0.08 2.4697 2.4918 0.0221 0.9
0.8 0.002 0.02 2.4189 2.4918 0.0729 3.0
0.8 0.002 0.08 2.1935 2.4918 0.2983 13.6
0.8 0.008 0.02 2.4358 2.4918 0.0560 2.3
0.8 0.008 0.08 2.2108 2.4918 0.2810 12.7

Note that Ps = 15, X = 20, σs = 0.3, callO = call price for our model, callBS = call price for B–S model, � = callBS − callO, �% = 100�/callO, and
τ = time to maturity (in year).

when τ = 0.25, ρ = 0.2, α = 0.002, σ = 0.02, callO = 0.0345 and callBS = 0.0351, which results in a dollar difference
� = callBS − callO = 0.0006 and a percentage difference �% = 100�/callO = 1.7. This overvaluation phenomenon is
more pronounced for larger values of τ, ρ, or σ. For example, when τ = 0.75, ρ = 0.8, α = 0.002, σ = 0.08, callO = 0.2550
and callBS = 0.4128. That is, � = 0.1578 and �% = 61.9.

Table 2 shows the two prices for at-the-money (Ps = 20 = X = 20) calls. Except for one case, the B–S model mod-
erately overvalues at-the-money calls. For example, when τ = 0.75, ρ = 0.2, α = 0.002, σ = 0.02, callO = 2.4797 and
callBS = 2.4918. That is, � = 0.0121 and �% = 0.5. This overvaluation phenomenon becomes more evident for larger τ,
ρ, or σ. Table 3 shows the two prices for in-the-money (Ps = 25 > X = 20) calls. Except for a few cases, the B–S model
slightly overvalues in-the-money calls. For example, when τ = 0.25, ρ = 0.8, α = 0.002, and σ = 0.02, callO = 5.3735
and callBS = 5.3773. That is, � = 0.0038 and �% = 0.1.

Table 3
Prices for in-the-money calls when the short rate at initial time t is 0.06.

τ ρ α σ callO callBS � �%

0.25 0.2 0.002 0.02 5.3772 5.3773 0.0001 0.0
0.2 0.002 0.08 5.3740 5.3773 0.0033 0.1
0.2 0.008 0.02 5.3806 5.3773 −0.0033 −0.1
0.2 0.008 0.08 5.3774 5.3773 −0.0001 −0.0
0.8 0.002 0.02 5.3735 5.3773 0.0038 0.1
0.8 0.002 0.08 5.3597 5.3773 0.0176 0.3
0.8 0.008 0.02 5.3770 5.3773 0.0003 0.0
0.8 0.008 0.08 5.3632 5.3773 0.0141 0.3

0.75 0.2 0.002 0.02 6.3195 6.3227 0.0032 0.1
0.2 0.002 0.08 6.2981 6.3227 0.0246 0.4
0.2 0.008 0.02 6.3460 6.3227 −0.0233 −0.4
0.2 0.008 0.08 6.3246 6.3227 −0.0019 −0.0
0.8 0.002 0.02 6.2801 6.3227 0.0426 0.7
0.8 0.002 0.08 6.1423 6.3227 0.1804 2.9
0.8 0.008 0.02 6.3069 6.3227 0.0158 0.3
0.8 0.008 0.08 6.1702 6.3227 0.1525 2.5

Note that Ps = 15, X = 20, σs = 0.3, callO = call price for our model, callBS = call price for B–S model, � = callBS − callO, �% = 100�/callO, and
τ = time to maturity (in year).
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4. Conclusion

Previous option pricing studies typically assume that the short rate is constant over the life of the option. In reality,
the short rate is evolving randomly through time. This study derives explicit pricing formulas for European call and
put on a stock when the short rate follows the Merton model. Our analysis indicates that each parameter in our option
valuation model exerts different degree of effect on the call price. In addition, using our model as a benchmark,
our analysis suggests that, in general, the B–S model overvalues out-of-the-money calls, moderately overvalues at-
the-money calls, and slightly overvalues in-the-money calls. Our analysis is directly extensible to American calls on
non-dividend-paying stocks and to European puts by virtue of put-call parity.
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